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In this paper we explain with simple geometric arguments the appearance of diffraction hyperbolas in RADAR images.
Moreover, we outline an inversion formula from integral geometry, which is derived using only elementary properties of
the Fourier transform, to reconstruct the refractive index of a medium from RADAR data. The theoretical results of this
paper are supported by real data from an industrial project.

1. Introduction

In this paper we derive some mathematical formulations of RADAR imaging. The objective is to explain
by elementary geometric arguments features which are visible in RADAR images. In fact, RADAR
images consist of partially overlapping hyperbolas, see Figure 2. Elementary geometrical reasoning can
be used to localize isolated objects. The quantitative reconstruction process, on the other hand, that is,
the reconstruction of quantitative properties of the reflecting object, turns out to be a classical problem of
integral geometry. It can be formulated as a problem of reconstruction of a function from averages over
spherical means (see for instance Helgason (2011); Gardner (2006); Agranovsky et al. (2007), to name
but a few, and see also the references therein).

This paper is organized as follows: In Section 2 we explain the basic working principle of a RADAR
device. Section 3 explains how to locate a single object via trilateration. Section 4 explains the appearance
of hyperbolas in RADAR images. Section 5 reports about a practical project of localising avalanche
victims using RADAR images. Section 6 discusses the reconstruction of quantitative information using
methods from integral geometry.

2. Working principle of a RADAR system

A RADAR system (an acronym for “Radio Detection And Ranging”) is designed to detect distant objects
by emitting a short electromagnetic pulse in the radio frequency spectrum, that is, with a wavelength
larger than infrared light, which is less reflected and distorted by the atmosphere than usual light, and
thus allows also to inspect objects which are hidden behind clouds, for example.

This pulse then propagates as a spherical wave with the speed of light. When it hits an object, a part of
this wave is reflected. This reflection again propagates as a spherical wave with center at this object and
will thus also arrive back at the position of the RADAR device, which records the reflected waves.

In particular, by measuring the time t between the emission of the pulse and the arrival of the reflected
electromagnetic wave, we can calculate from the known wave speed, the speed of light c, the distance r
of the object: r = t

2c . However, in this setup, we do lack the information to uniquely locate the object of
interest.

3. Object Localisation with Trilateration

If there is only one object reflecting the emitted radio wave, we can find its position by multiple mea-
surements via trilateration: Assume we make a RADAR measurement from three different positions
x0,x1,x2 ∈ R3. At each position we obtain the distances ri = |xi− x|, i = 0,1,2, between the unknown
position x ∈ R3 of the object and the known positions xi ∈ R3 of our RADAR device. Then, the point x
lies on the intersection of the three spheres ∂Bri(xi), which consists of only two points if the positions xi,
i = 0,1,2, are not colinear (that is, if they do not lie on a single line).
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Proposition 3.1 Let xi ∈R3, i= 0,1,2, be three given points which are not colinear. Then, a point x∈R3

with

|x− xi|= ri, i=0,1,2,

for some given distances ri ≥ 0, = 0,1,2, has an explicit coordinate representation of the form

x = x0 +
3

∑
i=1

αiei (1)

with respect to the (non-orthogonal) basis {e1,e2,e3} given by

e1 =
x1− x0

|x1− x0|
, e2 =

x2− x0

|x2− x0|
, e3 =

e1× e2

|e1× e2|
,

where

α1 =
β1−β2 〈e1,e2〉

1−〈e1,e2〉2
, β1 =

r2
0− r2

1 + |x1− x0|2

2|x1− x0|
, (2)

α2 =
β2−β1 〈e1,e2〉

1−〈e1,e2〉2
, β2 =

r2
0− r2

2 + |x2− x0|2

2|x2− x0|
, (3)

α
2
3 = r2

0−|α1e1 +α2e2|2. (4)

Proof: We first observe that for i = 1,2

〈x− x0,xi− x0〉= r2
0−〈x− x0,x− xi〉= r2

0 +
1
2
(|xi− x0|2− r2

0− r2
i ) = |xi− x0|βi,

where 〈·, ·〉 denotes the standard inner product on R3: 〈k,y〉 = k1y1 + k2y2 + k3y3. Thus, we get for the
decomposition (1) that

α1 +α2 〈e1,e2〉= 〈x− x0,e1〉= β1,

α1 〈e1,e2〉+α2 = 〈x− x0,e2〉= β2.

Solving this linear equation system, we arrive at the formulas (2) and (3) for α1 and α2. Finally, the last
coefficient α3 is determined by taking the norm of x− x0:

r2
0 = |x− x0|2 = |α1e1 +α2e2|2 +α

2
3,

which gives (4).

Usually, only one of the two choices for α3 in the representation (1), explicitly given by formula (4), is
physically meaningful. But we could still perform a fourth measurement from a point x3 ∈ R3 outside
the plane through the three points x0, x1, and x2 to decide which of the two coefficients α3 is correct.

4. Identifying Different Objects

However, in practice, there is not just one reflecting object, but instead every object produces some
signal of different strength so that we get simply a varying signal intensity and it is not trivial, how to
identify signals and corresponding objects. So, we first have to find which points in the signals of the
three different measurements correspond to the same object, before we can calculate the position of this
object.

To do so, let us not only consider three different measurement positions, but vary our position conti-
nuously. How does the signal of an object change during this motion?
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Proposition 4.1 Let γ : R→ R3 be the parametrisation of a straight line:

γ(τ) = x0 + vτ

for some initial position x0 ∈ R3 and a velocity v ∈ R3 \{0}.

Then, the distance

r(τ) = |x− γ(τ)|

fulfils the equation

r2(τ)

a2 −
(τ− τ0)

2

b2 = 1 (5)

of a hyperbola with center in (0,τ0) and half axes

a =
√
|x− x0|2−|v|2τ2

0 and b =
a
|v|

,

where

τ0 =
〈x− x0,v〉
|v|2

is the time at which the distance between x and the curve γ is minimal, see Figure 1.

Proof: We have that

r2(τ) = |x− x0− vτ|2 = |x− x0|2−2〈x− x0,v〉τ+ |v|2τ
2.

Completing the square gives us

r2(τ) = |v|2
(

τ− 〈x− x0,v〉
|v|2

)2

+ |x− x0|2−
〈x− x0,v〉2

|v|2
= |v|2(τ− τ0)

2 +a2,

which can be rewritten in the standard form (5).

x0 = γ(0) v γ(τ0)

x

γ(τ)

r(τ)
r(τ)

a
a

Fig. 1: Plotting the distances r(τ) between the point x and the points γ(τ)= x0+vτ, τ∈R, for some vector
v∈R3\{0} as a function of the distance |γ(τ)−x0|= vτ gives the hyperbola r2(τ)−(vτ−vτ0)

2 =
a2, where τ0 is chosen such that γ(τ0) is the point on the curve γ with minimal distance to x.

Thus, if we plot the intensity of the measured signal as a function of observation time t and of the position
γ(τ) of the RADAR device, we should see peaks in the intensity along hyperbolas corresponding to
strongly reflecting objects.

If we then do two of these measurement along two different intersecting straight lines, say γ1 and γ2
with γ1(0) = γ2(0), we can identify in the measurements for three different positions, say x0 = γ1(0),
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x1 = γ1(1) and x2 = γ2(1), the signal corresponding to some object, and therefore reconstruct its position
via trilateration as described in Section 3.

Looking at some real data, see Figure 2, we see the predicted hyperbolas. That we only see a small part of
the hyperbolas is mainly due to the fact that in practice the RADAR waves are focused in some direction
and thus only reach the object if it is in focusing direction. Additionally, the waves lose intensity as they
travel through the material which weakens the signal from more distant objects and therefore the objects
are best seen when they are closest, that is around the vertex of the hyperbola.

5. A Practical Application: Locations of Victims in Avalanches

The technique of localising objects which visually may be hidden, but are reachable with radio frequen-
cies, can be for example used to detect victims and bodies which were trapped by an avalanche under the
snow. In a project of the Comet-K1-Zentrum “alpS - Centre for Climate Change Adaptation” we have
been involved in trials for locating avalanche victims with a mobile RADAR device which is mounted
on a helicopter which flies with relatively constant speed along a straight line γ over the avalanche area
where victims are suspected. At each position γ(τ), determined by the flying time τ, the RADAR device
sends out a radio wave towards the ground and records the reflected waves as a function of the time t
after the emission, see Figure 2 for a picture of the helicopter and a sample of recorded data. (We hereby
neglect that the helicopter also moves during one of these measurements, since the travel time of such a
radio wave, assuming a distance to the ground is at most of the order of a few kilometres, is only of the
order of microseconds.)

τ

t

Top of the snow cover
Some object in the snow

Ground

Fig. 2: An image of the helicopter which was equipped with the mobile RADAR device, and the recorded
intensity of the reflected RADAR signal as a function of time t after the initial pulse at every
position γ(τ) of the helicopter during its search for a simulated avalanche victim.

6. Quantitative Reconstruction

Looking at the real measurement data in Figure 2, we see that the assumption of having only some distinct
reflecting objects is not really realistic. Instead, we rather want to assume that at every point some part
of the incoming wave is reflected and what we see as signal is simply the different amount of reflection.
So, let us introduce the reflection coefficient n(y) ∈ [0,1] specifying the percentage of the wave which is
reflected at a point y ∈ R3.
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Then, after the time t (measured from the time where the radio pulse is emitted), we detect all the reflected
waves which originate from points which are at distance r = t

2c . Therefore, the RADAR measurement at
a position x ∈R3 provides us (after correcting with the intensity of the initial wave and the intensity loss
of the reflecting wave) with the integral of the values of the reflection coefficient over the sphere ∂Br(x)
with radius r and center x:

m(r,x) =
∫

∂Br(x)
n(y)ds(y).

How can we extract now from this information the function n : R3→ R? Clearly, measurements at one
point x∈R3 are not enough, but if we make measurements at every position x∈E in a plane E ⊂R3, then
it turns out that we can explicitly reconstruct n. To show this, we will make use of the Fourier transform.
We give here the inversion formula for the Fourier transform without proof, see for example (Feeman,
2010, Chapter 5) for more details on the Fourier transform.

Theorem 6.1 For every smooth function f : R→ R with compact support, there exists a unique smooth
function f̂ : R→ R, the Fourier transform of f , such that for every x ∈ R the identity

f (x) =
1√
2π

∫
∞

−∞

f̂ (k)eikx dk

holds. This function f̂ is explicitly given by

f̂ (k) =
1√
2π

∫
∞

−∞

f (y)e−iky dy.

We may also write this result in terms of trigonometric functions.

Corollary 6.2 For every odd, smooth function f : R→ R with compact support, there exists a unique
smooth function f̃ : R→ R such that for every x ∈ R the identity

f (x) =

√
2
π

∫
∞

0
f̃ (k)sin(kx)dk (6)

holds. The function f̃ is explicitly given by

f̃ (k) =

√
2
π

∫
∞

0
f (y)sin(ky)dy.

Proof: Since f is odd, the Fourier transform f̂ of f is of the form

f̂ (k) =
1√
2π

∫
∞

−∞

f (y)e−iky dy =
1√
2π

∫
∞

−∞

f (y)(cos(ky)− i sin(ky))dy =−i

√
2
π

∫
∞

0
f (y)sin(ky)dy.

Thus, f̂ (k) =−i f̃ (k) is purely imaginary and we find that

f (x) = ℜe( f (x)) =
1√
2π

∫
∞

−∞

ℜe( f̂ (k)eikx)dk =
1√
2π

∫
∞

−∞

f̃ (k)sin(kx)dk.

Since f̃ is clearly odd, we get (6).

Finally, let us come to the reconstruction of the reflection coefficient from the measurements.

Proposition 6.3 Let n : R3→ R be a smooth function with compact support and assume that we know
the values

m(r,x) =
∫

∂Br(x)
n(y)ds(y) =

∫
∂Br(0)

n(x+ y)ds(y) (7)
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for all r > 0 and every x ∈ R3 with x3 = 0. Then, the function n fulfils the relation

n(y1,y2,y3)+n(y1,y2,−y3) =
1

4π3

∫
R3

∫
∞

0
m̂(r,k1,k2,0)

k3 sin(|k|r)
r

ei〈k,y〉 dr dk, y ∈ R3, (8)

where m̂ is the Fourier transform of m with respect to x1 and x2:

m̂(r,k1,k2,x3) =
1

2π

∫
∞

−∞

∫
∞

−∞

m(r,x1,x2,x3)e−i(k1x1+k2x2) dx1 dx2, r > 0, k1,k2,x3 ∈ R. (9)

Proof: Writing the function n in terms of its Fourier transform with respect to all three components, we
find according to Theorem 6.1 that

m(r,x) =
1

(2π)
3
2

∫
R3

∫
∂Br(0)

n̂(k)ei〈k,x+y〉 ds(y)dk,

where

n̂(k) =
1

(2π)
3
2

∫
R3

n(y)e−i〈k,y〉 dy.

To calculate the inner integral, we consider a rotation R∈ SO(3) which maps the vector k into |k|(0,0,1)t.
In this way, we get for y = Rtz

〈k,y〉=
〈
k,Rtz

〉
= 〈Rk,z〉= |k|

〈0
0
1

 ,z

〉
= |k|z3.

Then it follows by using spherical coordinates z = r(sinθcosϕ,sinθsinϕ,cosθ)t:∫
∂Br(0)

ei〈k,y〉 ds(y) =
∫

∂Br(0)
ei|k|z3 ds(z) =

∫ 2π

0

∫
π

0
ei|k|r cosθr2 sinθdθdϕ

= −2πr
i|k|

ei|k|r cosθ

∣∣∣∣π
0
= 4πr

sin(|k|r)
|k|

.

Thus, we get

m(r,x) = r

√
2
π

∫
R3

n̂(k)
sin(|k|r)
|k|

ei〈k,x〉 dk.

If we restrict this now to values x ∈ R3 with x3 = 0, then this is seen to be of the form of a Fourier
transform with respect to x1 and x2, and we find with the notation (9) that

m̂(r,k1,k2,0) = 2r
√

2π

∫
∞

−∞

n̂(k)
sin(|k|r)
|k|

dk3.

We split the integral now in one over the positive values and one over the negative values of k3. In the
latter, we then substitute k3 by −k3 and combine the integrals again. This gives us

m̂(r,k1,k2,0) = 2r
√

2π

∫
∞

0
(n̂(k1,k2,k3)+ n̂(k1,k2,−k3))

sin(|k|r)
|k|

dk3.

Next, we substitute k3 by the variable

κ = |k|, that is k3(κ) =
√

κ2− k2
1− k2

2.
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This yields with the volume element dk3(κ) =
κ

k3(κ)
dκ:

1
2πr

m̂(r,k1,k2,0) =

√
2
π

∫
∞

√
k2

1+k2
2

n̂(k1,k2,k3(κ))+ n̂(k1,k2,−k3(κ))

k3(κ)
sin(κr)dκ.

This is now of the form (6) with

f̃ (κ) =


1

k3(κ)
(n̂(k1,k2,k3(κ))+ n̂(k1,k2,−k3(κ))) if κ≥

√
k2

1 + k2
2,

0 if κ <
√

k2
1 + k2

2.

Therefore, we find that√
2
π

∫
∞

0

m̂(r,k1,k2,0)
2πr

sin(κr)dr =
n̂(k1,k2,k3(κ))+ n̂(k1,k2,−k3(κ))

k3(κ)

for every κ≥
√

k2
1 + k2

2.

Switching back to the variable k3 instead of κ, multiplying with k3, and doing an inverse Fourier transform
with respect to k1, k2, and k3, we get the formula (8).

So, by calculating the right hand side of (8), we obtain the symmetric combination of the reflection
coefficient n. To get the reflection coefficient itself, we could only register signals originating from points
y ∈ R3 with y3 > 0. This would correspond to setting n(y) = 0 whenever y3 ≤ 0, so that we can drop the
second term on the left hand side of (8) and obtain the desired reconstruction formula for n.

Remark 6.4 The reconstruction formula (8) can actually be used to determine the reflection coeffi-
cient n. However, the practical realization requires a dense set of measurement on the whole two-
dimensional Euclidean domain. For the avalanche victims detection problem we require the helicopter to
fly in a path which covers at least the area of the locations of victims and a sufficiently dense flight path.
Missing measurement regions and not a sufficiently dense data recording results into artefacts, which
can be explained with micro-local analysis, see Frikel and Quinto (2015). A numerical inversion of the
back-projection formula for RADAR images has been investigated in Grasmair et al. (2015).

Conclusion
In this paper we have explained certain features in RADAR images. We have shown that the inversion
process for the refractive index is in fact a problem of integral geometry. The theoretical result of this
paper are complemented by some report about an industrial project for locating avalanche victims.
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